
 1

Results from the read-30 test

Adam Lyon, August 1, 2005

1 Introduction
A SAM test was performed to determine the rate of file deliveries possible on
a test CAF system.

2 Test Particulars
The test was started at 5pm on Friday July 29, 2005 and ended at 1:10pm on
Saturday July 30, 2005.

The test consisted of submitting segments that looped 40 times; each loop
consisted of a python sam.getNextFile python call, waiting for the file URL to
be delivered, waiting 30 seconds to simulate processing, and finally releasing
the file with a sam.releaseFile call. Since the "processing time" was 30
seconds, the name of this test is read-30.

The test CAF (--farm=fncdf) was used and consisted of 925 virtual machines.
Twenty datasets were created, each containing about 1/20th of the xbhd0d
golden dataset (full dataset contains 42,122 files). The script
/cdf/scratch/cdfopr/sam-testing/makeDefs.py was used to make the
datasets. Then 20 jobs were submitted (one per dataset), each consisting of
fifty segments. So 1000 segments of 40 files means 40,000 files should have
been requested.

The jobs were submitted using script /cdf/scratch/cdfopr/sam-
testing/doSubmit.py which calls submit-mimic-caf-usage-fncdf.sh (written
by Doug) that submits the job to the test CAF.

For these tests we used sam v7_2_0 against the user_int universe. Note that
we used our own CafSubmit script that turns off a very slow data set
validation (meant to warn the user if the majority of files in their dataset are
not cached - since we know all of our files are in the cache, this check is not
necessary).

Jobs were run with job logs copied to /cdf/scratch/cdfopr/sam-testing/read-
30. A script there called parseLogs.py opens the tar files, extracts the log file
and processes it forming a new large file with a sum of information from each
log. This large file contains the get next file request times, the time it took for
the file to be delivered, and the time of the file release.

 2

Other logs were used to monitor different aspects of the system. This will be
covered when they are analyzed.

3 Results
The test was a success in that the vast majority of files were successfully
delivered within about 20 hours. There are some interesting effects to note,
however.

3.1 Results from job output logs
See Appendix A.2 for the code that produces the results in this section.

There were 39281 successful file deliveries over approximately 20 hours. Note
that 14 segments crashed with an untrapped unknown exception generated
by sam.releaseFile. This caused 191 files to be missed due to the crashesd
segments. I don't know why this doesn't add up to 40,000 [will need to check -
- maybe some segments never started].

The deliveries amount to about 50,000 files delivered per day. But note that
an obvious 9 hours service outage makes this value smaller than it should
have been.

3.1.1 Request and Delivery Rates

Fig. 1. Get Next File request rate

 3

The rate of sam.getNextFile per hour is shown in Fig. 1. We were able to
achieve a rate of between 2000 and 4000 requests per hour, or between 0.5
requests per second and a little more than one request per second.

The file delivery rate per hour (when the URL actually arrived to the waiting
segment) is shown in Fig. 2.

Fig. 2. File Delivery Rate

In both plots, one notices an obvious service outage between 4am and noon on
Saturday, July 30, 2005. Must figure that out.

3.1.2 Delivery wait times
The job log files contain how long each Get Next File request had to wait for
its file to be delivered. These results are shown in various ways below.

 4

Fig. 3. The wait times for file deliveries vs. the time of the request.

Fig. 4. The wait times for file deliveries vs. the delivery time.

 5

Fig. 3 and Fig. 4 show the delivery wait time against the time of the request
and time of the delivery respectively. Note that these plots really only show
off the outliers and it is impossible to see the average wait times. But one can
see that some of the outliers are quite large, even at the very beginning of the
test. This needs to be understood.

A more useful plot is the median wait time in hour blocks as shown in Fig. 5.
Here the median is used as outliers affect it less than a mean (but see the
appendix for that plot). Note that the empty part of the plot is where there
were no deliveries during the mystery outage.

Fig. 5. Median file delivery wait time (minutes) in hour blocks.

One sees that the median wait time is a maximum of eleven minutes and
improves dramatically at about midnight.

Fig. 6 shows the fraction of deliveries that took over an hour to complete. The
maximum is about 8% and occurs just before the service outage.

 6

Fig. 6. The fraction of delivery times that took over an hour.

From the job log files, it is possible to determine the number of unfulfilled file
delivery requests that were "queued" at any given time. This information is
shown in Fig. 7. Had file delivery been very fast (faster than the get next file
request rate), then this plot should have averaged a little above zero. But
because file delivery is significantly slower than the rate of new requests, one
sees them piling up. There comes a point, at about midnight, when the file
delivery rate speeds up for some reason and causes the unfulfilled request
count to fall. Would be interesting to figure out what caused that! And again
one sees the service outage when no requests were fulfilled.

 7

Fig. 7. The instantaneous number of unfulfilled file delivery requests.

More to come.

 8

Appendix A R Session
R is an open source statistical analysis software package that allows for very
easy analysis of data in databases and text files. I wrote a "notebook" style
package that allows one to use R from within Microsoft Word. Below is the
notebook providing all of the code and results for this document.

A.1 Connect to R and initialize
Connect to R running locally on my laptop.

<R0> #connect port 6101 timeout 20
R is using work directory /Users/adam/work/projects/cdfSamTests/read-30
Set up graphics

<R1> library(lattice)

<R2> trellis.par.set(col.whitebg())

<R3> fontsize = trellis.par.get("fontsize"); fontsize$text=16 ;
fontsize$points=6 ; trellis.par.set("fontsize", fontsize)

I have a helper function that makes putting graphics into Word easy.

<R4> mp
function (plotExpr, file, height = 7, width = 7, res = 72 * 3)
{
 bitmap(file, "pngalpha", height = height, width = width,
 res = res, pointsize = 10)
 r = eval(plotExpr)
 if (class(r) == "trellis")
 print(r)
 invisible(dev.off())
}
<environment: namespace:RemoteRSOAP>

A.2 Running job output
Doug's python script loops over getting the next file, waiting thirty seconds to
simulate processing, and then releasing the file. A log file records the time of
the get next file, the duration of the command, the pnfs name of the file, and
the time and duration of the release file command.

Let's read this information into R.

 9

<R5> d = read.table("out.log", header=T)

<R6> d[1:5,]
 job segment getDate getTime getDur fileNum
1 245 1 2005-07-29 17:25:19 25.573 1
2 245 1 2005-07-29 17:26:15 36.284 2
3 245 1 2005-07-29 17:27:21 40.078 3
4 245 1 2005-07-29 17:28:31 66.103 4
5 245 1 2005-07-29 17:30:08 69.070 5

pnfs
1
dcap://cdfdca1.fnal.gov:25144/pnfs/fnal.gov/usr/cdfen/filesets/GJ/GJ23/
GJ2365/GJ2365.0/xd025f02.03c6bhd0
2
dcap://cdfdca1.fnal.gov:25144/pnfs/fnal.gov/usr/cdfen/filesets/GJ/GJ24/
GJ2422/GJ2422.0/xd026062.0380bhd0
3
dcap://cdfdca1.fnal.gov:25144/pnfs/fnal.gov/usr/cdfen/filesets/GJ/GJ26/
GJ2657/GJ2657.0/xd0260f7.0093bhd0
4
dcap://cdfdca1.fnal.gov:25144/pnfs/fnal.gov/usr/cdfen/filesets/GJ/GJ27/
GJ2791/GJ2791.0/xd026110.01fabhd0
5
dcap://cdfdca1.fnal.gov:25144/pnfs/fnal.gov/usr/cdfen/filesets/GJ/GJ27/
GJ2791/GJ2791.0/xd026110.01debhd0
 relDate relTime relDur
1 2005-07-29 17:26:14 0.503
2 2005-07-29 17:27:21 0.091
3 2005-07-29 17:28:31 0.111
4 2005-07-29 17:30:08 0.095
5 2005-07-29 17:31:47 0.106
Convert dates and times into POSIX times that R can deal with...

<R7> d$getDateTime = paste(d$getDate, d$getTime)

<R8> d$relDateTime = paste(d$relDate, d$relTime)

<R11> d$getPTime = as.POSIXct(strptime(d$getDateTime, "%Y-%m-%d
%H:%M:%S"))

<R12> d$relPTime = as.POSIXct(strptime(d$relDateTime, "%Y-%m-%d
%H:%M:%S"))

We can make the delivery time from the get time plus the duration

<R15> d$delPTime = d$getPTime + d$getDur

 10

What is the range of the test?

<R18> testEdges = c(min(d$getPTime), max(d$relPTime, na.rm=T)) ;
testEdges

[1] "2005-07-29 17:25:19 CDT" "2005-07-30 13:09:22 CDT"

<R19> diff(testEdges)
Time difference of 19.73417 hours

<R20> prettyEdges = c(testEdges[1]-60*60, testEdges[2]+60*60)

A.2.1 Basics
How many files deliveries were attempted?

<R42> nrow(d)
[1] 39281
How many failed on the get end?

<R43> sum(is.na(d$getDur))
[1] 0
How many failed on the release end?

<R44> sum(is.na(d$relDur))
[1] 14

<R106> #var successfulDeliveries = nrow(d)
39281
How many files were missed?

<R107> lastNum = d$fileNum[is.na(d$relDur)]

<R111> sum(40-lastNum)
[1] 191

<R112> #var nMissed = sum(40-lastNum)
191
This means that these jobs with failures crashed -- meaning that some files
never got asked for.

A.2.2 Number of gets and deliveries
Let's count up how many get file requests and deliveries there were per hour

<R37> getsPerHourCuts = cut(d$getPTime, "hours")

<R38> delsPerHourCuts = cut(d$delPTime, "hours")

<R24> getsPerHour = tabulate(getsPerHourCuts)

<R25> delsPerHour = tabulate(delsPerHourCuts)

 11

<R47> mp(
 xyplot(getsPerHour ~ as.POSIXct(levels(getsPerHourCuts)),
 main="Get file requests",
 xlab="Time of day of request",
 ylab="# per hour", type="s", xlim=prettyEdges,
 scales=list(x=list(tick.number=10, cex=0.6))
),
"getsPerHour.png", h=4, w=6
)
#with graphics getsPerHour.png timeout 60

Hmmm - no file requests were made between about 4am and noon on
Saturday.

<R45> mp(
xyplot(delsPerHour ~ as.POSIXct(levels(delsPerHourCuts)),
 main="File deliveries",
 xlab="Time of day of delivery", xlim=prettyEdges,
 ylab="# per hour", type="s",
 scales=list(x=list(tick.number=10, cex=0.6))
),
"delsPerHour.png", h=4, w=6
)
#with graphics delsPerHour.png timeout 60

 12

What do the wait times look like?

<R57> mp(
xyplot(getDur/60/60 ~ getPTime, data=d,
 main="File delivery waits",
 xlab="Time of day of request", xlim=prettyEdges,
 ylab="Wait time (hours)",
 scales=list(x=list(tick.number=10, cex=0.6))
),
"getWaits.png", h=4, w=6
)
#with graphics getWaits.png timeout 60

 13

<R59> mp(

xyplot(getDur/60/60 ~ delPTime, data=d,
 main="File delivery waits",
 xlab="Time of day of delivery", xlim=prettyEdges,
 ylab="Wait time (hours)",
 scales=list(x=list(tick.number=10, cex=0.6))
),
"delWaits.png", h=4, w=6
)
#with graphics delWaits.png timeout 60

 14

These plots make the outliers really stand out and hard to see the mean wait
times. Let's try to plot those...

<R60> mp(
bwplot(getsPerHourCuts ~ getDur/60/60, data=d,
 main="File delivery waits",
 xlab="Wait time (hours)", ylab="Time of day of request"
),
"waitsPerHourBw.png", h=4, w=6
)
#with graphics waitsPerHourBw.png timeout 60

 15

Again, the outliers dominate the plot. Let's just plot medians and how many
are over an hour...

<R65> waitMedians = tapply(d$getDur/60, getsPerHourCuts, median)

<R80> waitMeans = tapply(d$getDur/60, getsPerHourCuts, mean)

<R67> nOverHour = tapply(d$getDur/60/60 >= 1, getsPerHourCuts, sum)

<R71> percOverHour = nOverHour / getsPerHour * 100\ nOverHour =

<R85> nOverHalfHour = tapply(d$getDur/60/60 >= 0.5, getsPerHourCuts,
sum)

<R86> percOverHalfHour = nOverHalfHour / getsPerHour * 100

Let's plot these things

<R81> mp(
xyplot(waitMedians ~ as.POSIXct(names(waitMedians)), type="s",
 main="Median wait time", xlab="Time of day of request",
 ylab="Median wait time (minutes)",
 scales=list(x=list(tick.number=10, cex=0.6))
),
"medians.png", h=4, w=6)
#with graphics medians.png timeout 60

 16

<R83> mp(

xyplot(waitMeans ~ as.POSIXct(names(waitMeans)), type="s",
 main="Mean wait time", xlab="Time of day of request",
 ylab="Mean wait time (minutes)",
 scales=list(x=list(tick.number=10, cex=0.6))
),
"means.png", h=4, w=6)
#with graphics means.png timeout 60

 17

<R88> mp(

xyplot(percOverHour ~ as.POSIXct(names(percOverHour)), type="s",
 main="Percent long wait times", xlab="Time of day of
request",
 ylab="% with wait time >= 1 hour",
 scales=list(x=list(tick.number=10, cex=0.6))
),
"overHour.png", h=4, w=6)
#with graphics overHour.png timeout 60

 18

<R87> mp(

xyplot(percOverHalfHour ~ as.POSIXct(names(percOverHalfHour)),
type="s",
 main="Percent long wait times", xlab="Time of day of
request",
 ylab="% with wait time >= 30 Minutes",
 scales=list(x=list(tick.number=10, cex=0.6))
),
"overHalfHour.png", h=4, w=6)
#with graphics overHalfHour.png timeout 60

 19

A.2.3 Look at number of open requests
Let's look at the number of instantaneous requests that are open at any given
time.

Get next file requests...

<R89> gnf = data.frame(time=d$getPTime, adj=1)

File deliveries (request fulfilled)

<R92> gnc = data.frame(time=d$delPTime, adj=-1)

Join them,

<R93> gn = rbind(gnf, gnc)

Sort by time,

<R94> gn = gn[order(gn$time),]

Do a running count of # of unfulfilled get next file requests

<R95> gn$count = cumsum(gn$adj)

<R96> gn[1:10,]

 20

 time adj count
1 2005-07-29 17:25:19 1 1
81 2005-07-29 17:25:42 1 2
201 2005-07-29 17:25:43 1 3
110000 2005-07-29 17:25:44 -1 2
81100 2005-07-29 17:25:46 -1 1
201100 2005-07-29 17:25:46 -1 0
121 2005-07-29 17:25:53 1 1
17448 2005-07-29 17:25:53 1 2
174481 2005-07-29 17:25:54 -1 1
121100 2005-07-29 17:25:55 -1 0

<R97> summary(gn$count)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0 330 876 696 891 925
Plot it...

<R102> mp(
 xyplot(gn$count ~ gn$time, type="s",
 main="Unfulfilled get next file requests",
 xlab="Time of day",
 ylab="Instantaneous # of unfulfilled requests",
 scales=list(x=list(tick.number=10, cex=0.6)),
 xlim=prettyEdges),
"unfulfilled.png", h=4, w=6)
#with graphics unfulfilled.png timeout 120

 21

I think this just shows the affect of the request wait time being longer than
the request rate.

